Constraining Particle Sizes of Saturn's F Ring
Abstract
Saturn's beauty is often attributed to the magnificent rings that encircle the planet. Although admired for hundreds of years, we are now just beginning to understand the complexity of the rings as a result of new data from the Cassini orbiter. Studying occultations of the rings provides information about the distribution and sizes of the particles that define the rings. During one solar occultation, the Ultraviolet Imaging Spectrograph (UVIS) on board Cassini was slightly misaligned with the Sun, decreasing the amount of direct solar signal to ~1% of the normal value. As a result, UVIS detected a peak in photon counts above the non-occulted signal due to forward-scattered light diffracted by the small particles in the F Ring. There is a direct relationship between the size of the particles and the intensity of the light scattered. We utilize this relationship in a model that replicates the misalignment and calculates the amount of light that would be detected as a function of the particle sizes in the ring. We present new results from the model that constrain the size distribution of the dynamically active F Ring, contributing to the study of the origin and evolution of Saturn's ring system.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2011
- Bibcode:
- 2011AGUFM.P13B1666B
- Keywords:
-
- 6265 PLANETARY SCIENCES: SOLAR SYSTEM OBJECTS / Planetary rings