Trends in Surface-Water Nitrate-N Concentrations and Loads from Predominantly-Forested Watersheds of the Chesapeake Bay Basin
Abstract
Water quality monitoring data from streams and rivers provide the "gold standard" by which progress toward achieving real reductions in nutrient loadings to Chesapeake Bay must ultimately be assessed. The most recent trend results posted at the Chesapeake Bay Program (CBP) website reveal that a substantial percentage of tributaries are now showing long-term declines in flow-adjusted concentrations of nutrients and sediments: 22 sites showed statistically significant (p < 0.05) downward trends (1985-2010) in flow-adjusted concentrations, two sites showed upward trends, and eight sites showed no trend. Based on the data, the CBP has drawn the following conclusion: "At many monitored locations, long-term trends indicate that management actions, such as pollution controls for improved wastewater treatment plants and practices to reduce nutrients on farms and suburban lands, have reduced concentrations of nitrogen." But could this conclusion be pre-mature? I recently undertook a comparable analysis of long-term nitrate-N trends for a different group of watersheds (all located in the Chesapeake Bay watershed with long data records); this group includes nine watersheds that are predominantly (i.e., >75%) forested, plus five other Potomac River subwatersheds added for comparison. Based on comparable data and analytical methods to those used by CBP partners and USGS, 13 of the 14 sites-including both Potomac River stations (Chain Bridge at Washington DC and Hancock, Maryland)-showed statistically significant decreasing linear trends in annual flow-weighted nitrate-N concentration. Only one station-the heavily agricultural Upper Monocacy River-did not show a statistically significant (p < 0.05) trend. Five of the predominantly-forested watersheds also showed statistically significant decreasing trends in annual nitrate-N loads, and none of the stations showed a trend in annual runoff presumably due to high inter-annual hydroclimatological variability. While the largest absolute changes in nitrate-N concentration corresponded to the least forested watersheds, the largest percentage changes in nitrate-N concentration were actually observed for those watersheds with the greatest percentages of forestland. This result suggests that the natural dynamics of forests may be playing a very important (and under-appreciated) role in improving water quality throughout the Bay watershed. A second interesting finding was that the statistically significant reductions in annual nitrate-N concentration at the Potomac River RIM station could be entirely explained by commensurate improvements at the upstream (Hancock) station; in fact, no trend in nitrate-N concentration associated with the eastern portion of the basin was found (after subtracting out the influence of the upstream portion). Additional research is needed to understand why nitrogen retention by forested lands may be increasing and thus helping restore water quality throughout the Chesapeake Bay watershed. The results also have obvious implications for meeting local water quality goals as well as the basin-wide goal of the Chesapeake Bay TMDL for nitrogen.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2011
- Bibcode:
- 2011AGUFM.H53K1555E
- Keywords:
-
- 1848 HYDROLOGY / Monitoring networks;
- 1871 HYDROLOGY / Surface water quality