Optimizing Design of the Solid State Skimmer using MATLAB
Abstract
More environmentally friendly practices for handling sediment laden stormwater during land disturbing activities are desired. A new patent pending technology, the Solid State Skimmer (SSS), was developed at the University of Tennessee to retain sediment by skimming stormwater from the surface of a sediment pond without the need for moving parts. A previous study showed that the SSS is effective at reducing outflow turbidity. The present research attempts to optimization the SSS sediment trapping efficiency while ensuring the device maintains local stormwater regulations. MATLAB was selected as the means to solve for the optimized design because of its ability to handle complex computations and has an extensive mathematically based library. The core function of the design program is to minimize the hydraulic gradient across the SSS automatically by simultaneously adjusting the geometric parameters of the flow structure while matching inflow and outflow. Minimizing the hydraulic gradient is the core process and is optimized by MATLAB via built-in optimizing programs. Additional algorithms invoke optional constraints and objectives that allow the SSS design to meet local regulations such as: peak discharge, fixed or adjustable basin size, retention time, and general sediment type. These additional options can be utilized simultaneously or individually. If selected, the additional option is applied to the program as an objective or constraint and employed by the optimization algorithms for further design refinements. The optimizing program produces a more effective SSS that discharges cleaner stromwater, thus further decreasing the environmental impact of the land disturbing activities.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2011
- Bibcode:
- 2011AGUFM.H53J1545M
- Keywords:
-
- 1861 HYDROLOGY / Sedimentation;
- 1862 HYDROLOGY / Sediment transport;
- 1871 HYDROLOGY / Surface water quality