The Effects of Acid Rock Drainage (ARD) on Fluorescent Dissolved Organic Matter (DOM)
Abstract
Located in the Rocky Mountains of central Colorado, the catchments drained by the headwaters of the Snake River are dominated by metal- and sulfide-rich bedrock. The breakdown of these minerals results in acidic metal-rich waters in the Snake (pH ~3) that persist until the confluence with Deer Creek (pH ~7). Previous research has been conducted examining the interactions of acid-rock drainage (ARD) and dissolved organic matter (DOM), but the effects of ARD on DOM production is not as well understood. In a synoptic study, samples of creek water were collected at evenly spaced intervals along the length of a tributary to the Snake River which drains an area with ARD. At each sampling location, water samples were collected and pH, conductivity, and temperature were measured. Water samples were analyzed for metal chemistry, and the DOM was analyzed with UV-Vis and fluorescence spectroscopy. The character of the DOM was described using PARAFAC and index calculations. This work demonstrates that the introduction of acid and dissolved metal species has notable effects on DOM composition. Preliminary data suggests that the introduction of acid drainage is responsible for the formation of a fluorophore not accounted for in the Cory and McKnight PARAFAC model. Both high concentrations of heavy metals (e.g. zinc) and the novel fluorophore are present downstream from a mining site, which indicates it as a possible source of both species. The data suggest a link between the introduction of fluorophores in acidic waters and acidophile populations at the source of the acid rock drainage.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2011
- Bibcode:
- 2011AGUFM.H51B1203L
- Keywords:
-
- 0461 BIOGEOSCIENCES / Metals;
- 0496 BIOGEOSCIENCES / Water quality;
- 1804 HYDROLOGY / Catchment