Ephemeral Dissolved Organic Carbon Fluxes from Agricultural Runoff on the Virginia Coastal Plain in the Chesapeake Bay Watershed
Abstract
Dissolved organic carbon (DOC) plays a critical role in nutrient cycling and contaminant transport, but DOC fluxes are not well constrained across different land uses and environments. Recent work has shown that agricultural runoff can have high DOC contents due to leaching of crop residues and soil organic matter by rain and irrigation waters. While riparian buffers are assumed to protect surface waters from agricultural runoff, on some fields, the natural topography can concentrate runoff to such an extent that a channel is incised. These channels can become ephemeral pathways for agricultural runoff to exit fields and enter nearby perennial streams without substantial contact with the riparian buffer. We use automated high resolution sampling of agricultural storm runoff and stream height to quantify DOC fluxes and dynamics in a single channel on the coastal plain of Virginia. We also assess dissolved organic matter as a source of organically bound nitrogen and phosphorus in this environment. Discharge measurements for flux calculations are determined with rating curves developed using stream stage height and salt dilution measurements for individual storms. We quantify DOC and major nutrients using ion chromatography, high temperature catalytic oxidation, and specific absorbance measurements at 254 nm. We determine N and P pools using UV digestion followed by ion chromatography. For a single storm event, specific absorbance at 254 nm increases as the hydrograph progresses, suggesting that water with a longer field residence time leaches more DOC as it is transported to the monitoring site. It is anticipated that the antecedent field conditions, particularly the degree of saturation from previous rain events, strongly influence the fluxes and character of DOC from an agricultural watershed. While ephemeral channels are often overlooked as sources of agricultural runoff, we find that they can facilitate the export of large quantities of DOC and nutrients during flashy, storm generated flows.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2011
- Bibcode:
- 2011AGUFM.H51B1199C
- Keywords:
-
- 0402 BIOGEOSCIENCES / Agricultural systems