Streamflow Responses and Ecological Implications of Climate Change in New York City Water Supply Watershed
Abstract
The impact of climate change in the North East United States is already observed in the form of shorter winter, higher annual average temperature, and more frequent extreme heat and precipitation events. These changes could have profound effects on the New York City (NYC) Water Supply and ecological integrity of the watersheds; and the implications of such changes are not well understood. The objective of this study is to examine how future changes in precipitation and air temperature may translate into changes in streamflow in the NYC Water Supply watershed using the Soil and Water Assessment Tool-Water Balance (SWAT-WB). A comparative analysis between simulated streamflow for baseline period (1964-2008) and future scenarios (2081-2100) was carried out for streamflow indicators that are important for understanding how river flow dynamics will impact the water supply, aquatic health, and physical structures in the stream corridor. We analyze the impacts of changes in the magnitude, timing, duration, frequency, and rate of hydrologic events using the Indicators of Hydrologic Alteration (IHA) tool. Our results indicate that warming during the winter and the early spring diminishes snowpack and influence timing of snowmelt. The winter and spring streamflow are projected to increase but summer will be drier in future. Decreased flow during April and summer months will influence timing of fish spawning and their habitats. Low flows, hydrograph pulses, rise and fall rates are expected to increase due to climate change, potentially creating unfavorable conditions for native species and aquatic invertebrates inhabiting along river's edge, and affecting stream bank stability and physical structures.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2011
- Bibcode:
- 2011AGUFM.H43B1204P
- Keywords:
-
- 1807 HYDROLOGY / Climate impacts;
- 1813 HYDROLOGY / Eco-hydrology;
- 1860 HYDROLOGY / Streamflow