Comparing the shear strength of grouted fractures: conventional methods vs biomineralisation
Abstract
For many engineering applications, such as geological disposal of nuclear waste, underground railways etc., it is necessary to limit fluid flow through fractures. The particle size of conventional cementitious grouts limits the size of fractures into which they can penetrate. To address this issue increasingly microfine and ultrafine cement grouts are becoming commercially available. Despite this the radius of penetration remains dependent on the grout viscosity alongside injection pressure, pumping rate, grout setting time and grout cohesion. As such lower viscosity aqueous solutions may have a greater radius of penetration potentially requiring fewer injection points. In addition cementitious grouts typically undergo volumetric shrinkage during setting. In many applications this change in volume may not be of particular importance but in others where a very low hydraulic conductivity is a critical design criterion, as in nuclear waste repositories, this reduction in volume may be highly significant. This study investigates the use of microbially induced carbonate precipitation (MCP) as a technique for grouting fine aperture rock fractures. Artificial fractures were created in granite cores and were subjected to conventional cementitious grouting methods and MCP. Following treatment the hydraulic and mechanical properties of the grouted fractures were investigated. The mechanical properties of grouts after setting is not usually considered to be a significant issue, but in applications which consider much longer timescales (100,000 years) grouts which result in fractures with improved strength and lower hydraulic conductivity are likely to be preferred.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2011
- Bibcode:
- 2011AGUFM.H21B1094E
- Keywords:
-
- 0419 BIOGEOSCIENCES / Biomineralization;
- 5104 PHYSICAL PROPERTIES OF ROCKS / Fracture and flow;
- 5114 PHYSICAL PROPERTIES OF ROCKS / Permeability and porosity