A view of annual water quality cycle and inter-annual variations in agricultural headwater catchment (Kervidy-Naizin, France)
Abstract
Climatic conditions impact biotransformation and transfer of solutes. Therefore, they modify solute emissions in streams. Studying these modifications requires long term and detailed monitoring of both internal processes and river loads, which are rarely combined. The Kervidy-Naizin catchment, implemented in 1993, is part of the French network of catchment for environmental research (SOERE RBV, focused on the Critical Zone). It is an intensive agricultural catchment located in a temperate climate in Western France (Brittany) (Molenat et al., 2008; Morel et al., 2009). It presents shallow aquifers due to impervious bedrock. Both hydrology and water chemistry are monitored with a daily time step since 2000-01, as well as possible explanatory data (land use, meteorology, etc.). Concentrations in major anions in this catchment are extremely high, which make people call it a "saturated" catchment. We identified annual patterns for chloride, sulphate, dissolved organic and inorganic carbon and nitrate concentration variations. First, we considered the complete set of concentration data as function of the time. From that, we foresaw 3 cyclic temporal patterns. Then, from representing the concentrations as function of meteorological parameters, intra-annual hysteretic variations and their inter-annual variations were clearly identified. Our driving question is to know if and how climatic conditions are responsible for variations of the patterns in and between years. In winter, i.e. rainy and cold period, rainfall is closely linked to discharge because of a direct recharge to the shallow groundwater. Reversely, in transition periods (spring and fall) and hot periods, both rainfall and temperature influences discharge in relation to their range of variations. Moreover, biological processes, driven by temperature and wetness, also act during these periods. On the whole, we can emphasize the specificity of water chemistry patterns for each element. Noticeable differences between hot and cold years and between wet and dry years can mainly be observed during spring and autumn period, i.e. when combining variations of rainfall and temperature. Further jointed statistical analyses between water chemistry and meteorology have to be carried on. References Molenat, J., Gascuel-Odoux, C., Ruiz, L., and Gruau, G. (2008). Role of water table dynamics on stream nitrate export and concentration. in agricultural headwater catchment (France). Journal of Hydrology 348, 363-378. Morel, B., Durand, P., Jaffrezic, A., Gruau, G., and Molenat, J. (2009). Sources of dissolved organic carbon during stormflow in a headwater agricultural catchment. Hydrological Processes 23, 2888-2901.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2011
- Bibcode:
- 2011AGUFM.H13C1216A
- Keywords:
-
- 1804 HYDROLOGY / Catchment;
- 1807 HYDROLOGY / Climate impacts;
- 1871 HYDROLOGY / Surface water quality;
- 1872 HYDROLOGY / Time series analysis