Summer and Fall Sea Ice Processes in the Amundsen Sea: Bottom melting, surface flooding and snow ice formation
Abstract
Two ice mass balance buoys were deployed on the Amundsen Sea, Antarctica, ice pack near January 1, 2011. Below freezing air and snow temperatures and sea ice and seawater temperatures at the freezing point at this time indicated that summer melt had not yet commenced. Over the next two months, however, while snow depths changed by less than 0.1m, ice thickness decreased, from bottom melting, by 0.9-1.0m. As snow temperature records did not show temperatures ever reaching the melting point, no surface melt was recorded during the summer period and the small snow depth changes were presumed to occur by consolidation or wind scouring. Water temperatures above the freezing point caused the observed bottom melting from mid January to late February. During the ice loss periods, progressive flooding by sea water at the base of the snow pack was recorded by temperature sensors, showing an increase in the depth of flooded snow pack of 0.4m by the end of the summer period in late February. We hypothesize that progressive flooding of the surface snow pack gives a mechanism for nutrient replenishment in these upper layers, and continuous high algal growth can therefore occur in the flooded snow layer during summer. An underice radiometer recorded light transmission through the ice and snow at selective wavelengths sensitive to chlorophyll. These radiometric results will be presented to examine this algal growth hypothesis. This flooded layer then refroze from the top down into snow ice as air temperatures dropped during March and April, showing that the layer had refrozen as snow ice on the top surface of the ice. Refreezing of the flooded layer gives an ice growth mechanism at the end of summer of 0.2 m to 0.4m of new ice growth over the majority of the ice pack. The snow ice growth in areas covered with pack ice gives salt fluxes commensurate with new ice growth in the autumn expansion of the ice edge over open water. These high salt fluxes therefore represent a marked contrast to the lower values of salt flux under the Arctic summer ice pack where salt fluxes are only associated with new ice forming in fall over a smaller percentage of the area than the widespread snow ice growth in the Antarctic pack ice zone.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2011
- Bibcode:
- 2011AGUFM.C23A0475A
- Keywords:
-
- 0736 CRYOSPHERE / Snow;
- 0750 CRYOSPHERE / Sea ice;
- 0762 CRYOSPHERE / Mass balance;
- 0768 CRYOSPHERE / Thermal regime