Dynamic Ice-Water Interactions Form Europa's Chaos Terrains
Abstract
Unique to the surface of Europa, chaos terrain is diagnostic of the properties and dynamics of its icy shell. We present a new model that suggests large melt lenses form within the shell and that water-ice interactions above and within these lenses drive the production of chaos. This model is consistent with key observations of chaos, predicts observables for future missions, and indicates that the surface is likely still active today[1]. We apply lessons from ice-water interaction in the terrestrial cryosphere to hypothesize a dynamic lense-collapse model to for Europa's chaos terrain. Chaos terrain morphology, like that of Conamara chaos and Thera Macula, suggests a four-phase formation [1]: 1) Surface deflection occurs as ice melts over ascending thermal plumes, as regularly occurs on Earth as subglacial volcanoes activate. The same process can occur at Europa if thermal plumes cause pressure melt as they cross ice-impurity eutectics. 2) Resulting hydraulic gradients and driving forces produce a sealed, pressurized melt lense, akin to the hydraulic sealing of subglacial caldera lakes. On Europa, the water cannot escape the lense due to the horizontally continuous ice shell. 3) Extension of the brittle ice lid above the lense opens cracks, allowing for the ice to be hydrofractured by pressurized water. Fracture, brine injection and percolation within the ice and possible iceberg toppling produces ice-melange-like granular matrix material. 4) Refreezing of the melt lense and brine-filled pores and cracks within the matrix results in raised chaos. Brine soaking and injection concentrates the ice in brines and adds water volume to the shell. As this englacial water freezes, the now water-filled ice will expand, not unlike the process of forming pingos and other "expansion ice" phenomena on Earth. The refreezing can raise the surface and create the oft-observed matrix "domes" In this presentation, we describe how catastrophic ice-water interactions on Earth have informed us about how such dynamics occur on Europa. We will discuss the observations of iceberg and matrix properties that imply shallow liquid water bodies on Europa, argue for the importance of granular mechanics in the interpretation of Europa's geology and present constraints on the properties of its ice shell. [1] Schmidt, B. E., Blankenship, D. D., Patterson, W., Schenk, P: Active chaos formation over shallow subsurface water on Europa, in review, 2011.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2011
- Bibcode:
- 2011AGUFM.C11A0666B
- Keywords:
-
- 0728 CRYOSPHERE / Ice shelves;
- 5200 PLANETARY SCIENCES: ASTROBIOLOGY;
- 5422 PLANETARY SCIENCES: SOLID SURFACE PLANETS / Ices;
- 6221 PLANETARY SCIENCES: SOLAR SYSTEM OBJECTS / Europa