Zinc isotope fractionation during surface adsorption by bacteria
Abstract
The cycling and transport of zinc (Zn) in natural waters is partly controlled by its adsorption and uptake by bacterial communities. These reactions are reflected in changes in the ratios of stable Zn isotopes; however, the magnitudes and directions of these changes are largely unconstrained. In the current work, we attempt to define Zn isotope fractionation factors for bacteria-Zn interactions by performing adsorption experiments with representative Gram-positive (Bacillus subtilis) and Gram-negative (Pseudomonas mendocina) bacteria. Experiments included, (1) pH-dependent adsorption using differing bacteria:Zn ratios, (2) Zn loading at constant pH, and (3) kinetics and reversibility experiments. Results indicate that Zn adsorption is fully reversible for both bacterial species. Moreover, under the same experimental conditions both bacterial species adsorbed Zn to similar extents. Initial isotopic analysis (using a Nu Instruments MC-ICP-MS) demonstrates that, as the extent of adsorption increases, the heavier Zn isotopes are preferentially incorporated as bacterial-surface complexes. Under conditions of low bacteria:Zn ratio, the Δ66Znbacteria-solution was about 0.3% for both bacterial species. This separation factor is similar to that found in other studies involving the complexation of Zn with biologic or organic components. For example, the complexation of Zn with Purified Humic Acid (PHA) resulted in a Δ66ZnPHA-solution of +0.24% [1], and sorption of Zn onto two separate diatom species resulted in Δ66Znsolid-solution of +0.43% and +0.27%, respectively [2]. These results suggest that Zn complexation with functional groups common to bacteria and natural organic matter may be a process that universally incorporates the heavier Zn isotopes. Our current work is focused on quantifying Zn isotope fractionation during metabolic incorporation by separating this effect from surface adsorption reactions. [1] Jouvin et al., (2009) Environ. Sci. Technol., 43(15) 5747-5754. [2] Gélabert et al., (2006) Geochim. Cosmochim. Acta 70(4) 839-857.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2011
- Bibcode:
- 2011AGUFM.B54D..02K
- Keywords:
-
- 0414 BIOGEOSCIENCES / Biogeochemical cycles;
- processes;
- and modeling;
- 0448 BIOGEOSCIENCES / Geomicrobiology;
- 0454 BIOGEOSCIENCES / Isotopic composition and chemistry;
- 0489 BIOGEOSCIENCES / Trace element cycling