Can the evolution of nitrogen cycle be traced by the N isotopic composition in mica?
Abstract
A significant portion of nitrogen present in sedimentary rocks has a biological origin, trapped either in organic form, or as ammonium ion substituting potassium in mica. Mica might preserve biological N isotopic signatures (δ15N) in the geological record, allowing the evolution of the N cycle to be traced. However, diagenetic or metamorphic events can modify the pristine N isotopic signature leading to inaccurate interpretations. For example, devolatilization of the rock leads to a reduction in the N abundance and a contemporary increase of the δ15N because 14N escapes faster than 15N. We measured N isotopic compositions in whole rock, mica and feldspars separates from two Archean suites of cherts: 3.5 Ga Kitty's Gap and North Pole sequences in Pilbara, Western Australia and from the 3.45 Ga Hooggenoeg Fm, Barberton Greenstone Belt, South Africa. N was compared with the argon elemental and isotopic composition, because a relation between NH4+, which replaces K+ and radiogenic 40Ar*, which is produced by electron capture of K+ is expected. Both Pilbara and Barberton cherts show a clear correlation between N and 40Ar*, confirming the occurrence of a common speciation. K-Ar dating of the Hooggenoeg Formation mica and feldspars give ages of 2.1 and 1.1 Ga, respectively, indicating that loosely-bounded noble gas 40Ar* is lost from the host mineral during known metamorphic events. Observed correlations between 40Ar* and N suggests that nitrogen, although more strongly bounded as ammonium is also lost, possibly leading to isotopic fractionation. Measured δ15N values, however, are relatively constant (+8.1±0.6% for whole rock and +10.9±1.2% for mica) and do not display an inverse correlation with N abundances. This suggests either 1) that isotopic fractionation is not produced during N loss or; 2) that a process other than devolatilization fractionate N isotopes. Measured δ15N values are at levels far greater than those expected for Early Archean kerogens (0±2%) thus suggesting that fractionation took place but probably is induced by a process other than devolatilization. Step-combustion analyses of N and Ar from Kitty's Gap cherts reveals the presence of an inverse correlation between δ15N values and the 40Ar*/N ratios indicating mixing between two isotopically distinct components. The first, released at temperatures between 400° and 700° C from hydrous minerals, has a δ15N value close or below 0% and is accompanied by radiogenic Ar. The second, void of radiogenic Ar, is released at temperatures >800° C from anhydrous phases and has a δ15N value of +6 to +8%. The first component is likely ammonium replacing K in mica while the second is possibly ammonium adsorbed in-between negatively charged layers of clay minerals. Upon dehydration, the inter-layer site will be "closed", and loosely adsorbed cations are finally trapped in the mineral while noble gas Ar is lost. The higher δ15N in mica is possibly due either to (1) trapping of N representing a later (post-Archean) event, or; (2) fractionation of N with negative δ15N value due to partial release of N from the adsorption site. Mixing between different aliquots of these two components might possibly explain the observed N isotopic variability among micas in the Archean.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2011
- Bibcode:
- 2011AGUFM.B41B0218P
- Keywords:
-
- 0414 BIOGEOSCIENCES / Biogeochemical cycles;
- processes;
- and modeling;
- 0424 BIOGEOSCIENCES / Biosignatures and proxies;
- 0454 BIOGEOSCIENCES / Isotopic composition and chemistry;
- 0469 BIOGEOSCIENCES / Nitrogen cycling