Effects of non-native earthworms on on below- and aboveground processes in the Mid-Atlantic region
Abstract
Many biotic and abiotic disturbances have shaped the structure of the deciduous forests in the Mid-Atlantic region. One major anthropogenic factor is land use history. Agricultural practices in the past undoubtedly facilitated non-native earthworm colonization and establishment. Today most secondary forests are dominated by European lumbricid earthworms, although native species also occur in some habitats. To investigate how earthworm community composition and abundance affect belowground processes and tree seedling growth we set up a field manipulation experiment at the Smithsonian Environmental Research Center in Edgewater, MD. A total of 66 experimental plots were set up in successional (70 yrs) and mature (150 yrs) Tulip-poplar-Oak associations. We manipulated earthworm abundance and leaf litter input, and planted seedlings of Tulip poplar, Red maple, Red oak, and American beech. The experiment lasted for two years during which we regularly monitored density, biomass and species composition of earthworm assemblages and measured soil respiration. Soil moisture, temperature and air temperature were also continuously monitored using a wireless sensor network. At harvest, soil bulk density, pH, N pools, C:N ratio, potential N-mineralization rates, and enzyme activity were determined. We used quantitative PCR to assess the community composition of soil fungi. We also determined the extent of mycorrhizal colonization and biomass of roots, shoots and leaves. We conducted likelihood ratio tests for random and fixed effects based on mixed model analyses of variance. Differences between soil depths and among sites and plots accounted for a large portion of the variation in many soil properties. Litter quality affected soil pH and N mineralization. Earthworm densities affected bulk density, inorganic N content, and N mineralization. Both mycorrhizal groups were more abundant in mature than in successional forests. Both ectomycorrhizal (ECM) and arbuscular (AM) fungi were less abundant in the earthworm removal plots. There was a significant positive earthworm effect on the rate and thermal sensitivity of soil respiration. Soil respiration was consistently higher in plots with tulip poplar litter than those with beech litter, indicating a strong influence of plant residue quality. However, the differences were smaller in the second year than in the first one indicating an adaptation of the soil system. Oak and beech seedlings were smaller in high density earthworm plots, while the reverse was true for maple and tulip poplar seedlings. Non-native earthworms affect below- and aboveground processes, however, these effects depend on forest type and land use history. The earthworm effects also appear to be dynamic, as witnessed by a recent invasion of an Asian earthworm species in one of our forest stands.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2011
- Bibcode:
- 2011AGUFM.B33B0431S
- Keywords:
-
- 0428 BIOGEOSCIENCES / Carbon cycling;
- 0439 BIOGEOSCIENCES / Ecosystems;
- structure and dynamics;
- 0486 BIOGEOSCIENCES / Soils/pedology