Effects of single-walled carbon nanotubes on soil microorganisms
Abstract
Single-walled carbon nanotubes (SWCNTs) are novel materials that have the potential to be used in various commercial fields due to their unique physicochemical properties. As a result of commercial development of nanotechnology, SWCNTs may be discharged to the soil environment with unknown consequences. However, there are as yet no data in the scientific literature that demonstrate the effects of SWCNTs on microbial function in soils. Therefore, we aimed to determine the effects of SWCNTs on soil microbial activity through a 2-week incubation study on urban soils supplemented with different concentrations of SWCNTs ranging from 0 to 1000 μg CNT/g soil. Fluorometric test using fluorogenic substrates were employed for the measurement of several enzyme activities in soil samples. More specifically, we determined the changes in the activities of cellobiohydrolase, β-1,4-glucosidase, β-1,4-xylosidase, β-1,4-N-acetylglucosaminidase, L-leucine aminopeptidase and acid phosphatase which play important roles in the carbon, nitrogen, and phosphorus cycles in response to the addition of SWCNTs. We found that microbial enzyme activities decreased as the concentrations of SWCNT added increased. The lowest enzyme activities were observed under 1000 μg CNT/g soil. The overall pattern shows that enzyme activities decreased slightly in the first 2-3 days and increased in the later stage of the incubation. Our results suggest that relatively high concentrations of SWCNTs can inhibit microbial activities, and this may be due to microbial cell membrane damage caused by SWCNTs. However, further study needs to be conducted to determine the mechanism responsible for inhibitory effect of SWCNTs on soil microbial activity. It can be concluded that changes in the activities of extracellular enzymes can indicate the effect of SWCNTs on soil microorganisms and nutrient cycling.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2011
- Bibcode:
- 2011AGUFM.B33B0428J
- Keywords:
-
- 0414 BIOGEOSCIENCES / Biogeochemical cycles;
- processes;
- and modeling;
- 0465 BIOGEOSCIENCES / Microbiology: ecology;
- physiology and genomics;
- 0470 BIOGEOSCIENCES / Nutrients and nutrient cycling;
- 0478 BIOGEOSCIENCES / Pollution: urban;
- regional and global