Woody encroachment by nitrogen-fixing species: impacts on nitrogen biogeochemistry expressed through nitrogen trace gases
Abstract
Woody plant encroachment is a globally important vegetation change that continues to transform former grasslands or savannas into woodlands. This dramatic and geographically widespread phenomenon appears to be driven primarily by human land use changes, including reduced fire frequency and heavy livestock grazing. Observed effects of increased woody plant abundance in grasslands generally include alterations of above- and belowground productivity, changes in the chemistry of litter inputs, modifications to rooting depths and distributions, altered biogeochemical and hydrologic processes, and changes in microclimate and energy balance. These changes to fundamental ecosystem characteristics have strong, but relatively poorly understood, potential to modify biogeochemical processes that can themselves influence regional and global climate through biogeochemistry-climate feedbacks. In addition, in South Texas woody encroachment has occurred across a complex landscape differing in soil type and water retention. This work tests the hypothesis that woody encroachment, in addition to increasing total nitrogen stocks in the system, has increased nitrogen losses due to increased rates of nitrogen soil gas efflux. Under dry soil conditions and in contrast to this hypothesis, reactive nitrogen soil efflux (NO + NOy + NH3) was 21.53 ± 3.4 ng N m-2 s-1 in intact grasslands compared to 6.23 ± 1.6 ng N m-2 s-1 in woodlands on the same soil type. The non-reactive nitrogen gas, nitrous oxide, was similar in magnitude between the grassland and encroached sites (~ 7 ng N m-2 s-1). Under moist soil conditions, the magnitude of flux increased and order of magnitude, but did not change the relative ranking. Measurements of soil respiration rate and microbial biomass suggest higher microbial activity in the encroached environment and potentially higher rates of immobilization by plants and microbes. Landscape position had a large overall effect on soil nitrogen trace gas efflux with lower areas across the landscape exhibiting higher rates.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2011
- Bibcode:
- 2011AGUFM.B31I..03S
- Keywords:
-
- 0400 BIOGEOSCIENCES