The Effect of the Presence and Density of Shewanella oneidensis on Nuclear Magnetic Relaxation Measurements
Abstract
A recent interest in the use of non-invasive geophysical methods to detect the presence of and measure the growth of microbes in the subsurface has arisen due to the potential use of such methods to monitor the progress of bioremediation. Previous research to this end has focused on electrical measurements, such as complex resistivity, which are sensitive to the presence of microbes but can be difficult to interpret. Nuclear magnetic resonance (NMR), an emerging near-surface geophysical method, is sensitive to the presence and physiochemical environment of hydrogen. Typically, NMR measurements in geophysics are used to detect hydrogen in water or hydrocarbons and to determine its pore environment; however, NMR imaging measurements have shown that NMR can also detect hydrogen in microbes. Geophysical NMR measurements thus have the potential to directly detect microbes in geologic material or indirectly detect the way in which the presence of microbes alters the physical and chemical properties of a water-saturated geologic material. This laboratory-scale study was designed to explore the effect of the presence and density of microbes on NMR relaxation measurements. Measurements were collected on microbial slurries and microbes in porous media both during microbial growth and on samples with known microbial density. Shewanella oneidensis was used as a representative environmental microbe in this study. The research shows that low field NMR measurements are sensitive to the presence and density of microbes and provides fundamental information required to determine if low-field NMR measurements can be used to monitor microbial growth during bioremediation.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2011
- Bibcode:
- 2011AGUFM.B31C0334K
- Keywords:
-
- 0416 BIOGEOSCIENCES / Biogeophysics