CO2 efflux from a calcareous Mojave Desert soil: isotopic results from a laboratory and field study
Abstract
Soil inorganic carbon (SIC) represents a substantial C pool in arid ecosystems. The contribution of the SIC pool to net ecosystem C flux is poorly understood but has gained attention because there have been reports of anomalous C fluxes in some arid environments. In the context of climate change, altered precipitation patterns and changes in soil pCO2 values (from changes in vegetation density, plant water use efficiency, and belowground respiration) could potentially affect SIC storage in some ecosystems. The stable carbon isotope values of organic and inorganic carbon (e.g. carbonates) can differ substantially and may be useful in determining whether PIC influences C fluxes. However, variable rates of heterotrophic and root respiration and diffusion of atmospheric CO2 into the soil as well as the variation and complexity of the CaCO3-CO2-H2O system at different soil depths can complicate interpretation of isotopic data. We monitored soil CO2 concentrations and CO2 efflux from irrigated and non-irrigated plots in a calcareous soil at the Mojave Global Change Facility (MGCF). The site is on the northern part of the Mojave Desert with a mean annual precipitation of 71 mm and vegetation characterized by a Larrea tridentata, Lycium spp., Ambrosia dumosa plant community. We used a Keeling plot approach to determine source δ13C values from effluxed CO2-13C in a laboratory incubation experiment and from direct field measurements of soil CO2-13C. Data from the laboratory incubation experiment suggested that there was a contribution of PIC on effluxed CO2-13C in a closed system, but results from the field measurements were much more difficult to interpret and did not support a large contribution of SIC to CO2 fluxes in these soils. We discuss the usefulness of isotopic measure of CO2 on CO2 efflux in the context of the MGCF experiment.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2011
- Bibcode:
- 2011AGUFM.B23G..05V
- Keywords:
-
- 0414 BIOGEOSCIENCES / Biogeochemical cycles;
- processes;
- and modeling;
- 0428 BIOGEOSCIENCES / Carbon cycling;
- 0486 BIOGEOSCIENCES / Soils/pedology;
- 1615 GLOBAL CHANGE / Biogeochemical cycles;
- processes;
- and modeling