Complex electrical monitoring of biopolymer and iron mineral precipitation for microbial enhanced hydrocarbon recovery
Abstract
Microbially enhanced hydrocarbon recovery (MEHR) mechanisms are expected to be impacted by processes and properties that occur over a wide range of scales, ranging from surface interactions and microbial metabolism at the submicron scale to changes in wettability and pore geometry at the pore scale to geological heterogeneities at the petroleum reservoir scale. To eventually ensure successful, production-scale implementation of laboratory-developed MEHR procedures under field conditions, it is necessary to develop approaches that can remotely monitor and accurately predict the complex microbially-facilitated transformations that are expected to occur during MEHR treatments in reservoirs (such as the evolution of redox profiles, oil viscosity or matrix porosity/permeability modifications). Our initial studies are focused on laboratory experiments to assess the geophysical signatures of MEHR-induced biogeochemical transformations, with an ultimate goal of using these approaches to monitor field treatments. Here, we explore the electrical signatures of two MEHR processes that are designed to produce end-products that will plug high permeability zones in reservoirs and thus enhance sweep efficiency. The MEHR experiments to induce biopolymers (in this case dextran) and iron mineral precipitates were conducted using flow-through columns. Leuconostoc mesenteroides, a facultative anaerobe, known to produce dextran from sucrose was used in the biopolymer experiments. Paused injection of sucrose, following inoculation and initial microbial attachment, was carried out on daily basis, allowing enough time for dextran production to occur based on batch experiment observations. Electrical data were collected on daily basis and fluid samples were extracted from the column for characterization. Changes in electrical signal were not observed during initial microbial inoculation. Increase of electrical resistivity and decrease of electrical phase response were observed during the experiment and is correlated with the accumulation of dextran in the column. The changes of the electrical signals are interpreted to be due to surface masking of sand grains by dextran that reduces polarizable surface area of the sand grains. A second experiment was conducted to evaluate the sensitivity of electrical geophysical methods to iron mineral precipitation as an alternative plugging mechanism. Although anaerobic iron oxidation coupled with nitrate reduction is the targeted process, aerobic experiments were first conducted as a simplified case without biologically related effects. In this experiment, iron minerals were precipitated through oxidation of ferrous iron by oxygen. Changes in geophysical signals as well as hydraulic permeability across the column were measured. Quantification of iron mineral precipitation was carried out through mass balance and the precipitate morphology and mineralogy were analyzed with optical and electron microscopy and XRD at the end of the experiments. Correlation between geophysical signature and iron mineral precipitation was established and will be used to guide the next experiment, which will focus on microbial facilitated iron oxidation coupled with nitrate reduction under anaerobic conditions.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2011
- Bibcode:
- 2011AGUFM.B23D..06W
- Keywords:
-
- 0416 BIOGEOSCIENCES / Biogeophysics;
- 1000 GEOCHEMISTRY