Landscape planning for the future: using fossil records to independently validate potential threats, opportunities and likely future range-shifts for socio-economically valuable plant species in Europe and sub-Saharan Africa
Abstract
Bioclimatic Envelope Models (BEMs) for a set of socio-economically important tree species in Europe were independently validated using a hindcasting approach and fossil pollen records spanning the last 1000 years, including the Medieval Warm Period (MWP), the Little Ice Age (LIA) and the 20th Century warming (PRES). The aim was to determine the accuracy of combining BEMs and palaeoecological data to predict continental-scale changes in distribution, and the availability of fossil data to hindcast economically important species. Eight types of BEMs were implemented in this study, covering most state-of-the-art modelling techniques. Present and palaeoclimatic data were obtained from the Atmosphere-Ocean Global Circulation Model ECHO-G. Last millenium was divided into three climatically distinct periods: MWP (AD 900-1300), LIA (AD 1600-1850) and PRES (AD 1900-2000). Models were calibrated for each period and validated with climatic and pollen data from the remaining periods. Successfully validated models were projected onto a 1-degree European grid, allowing the reconstruction of past modelled species distributions. BEMs were successfully validated with independent data. Strong model performance suggested high potential for BEMs to be used to model future species distributions, and highlighted the importance of palaeoecological data to independently validate these models, taking into account the scales at which this data operates. Although valid, BEMs showed poorer performance with species heavily managed and/or growing in heterogeneous terrain or with discontinuous distributions. Last millennium in Europe was characterized by an increase of crop woody species and a decline of forest species, suggesting an increasing land use by humans. The same approach was then implemented to a set of sub-Saharan plant species of high importance as a source of food, wood, and other ecosystem services such as carbon storage or erosion protection. The African study covered most of the Holocene, including the sharp transition from wet to dry climate about 5000 yr. B.P., of crucial importance to understand the response of the savannah/desert system to large climatic shifts over a region especially sensitive to these oscillations. Validated models were projected onto ensemble climate projections for the late 21st century, providing robust predictions of the future distribution of these key plant species.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2011
- Bibcode:
- 2011AGUFM.B21D0281M
- Keywords:
-
- 0410 BIOGEOSCIENCES / Biodiversity;
- 0439 BIOGEOSCIENCES / Ecosystems;
- structure and dynamics;
- 0476 BIOGEOSCIENCES / Plant ecology;
- 1605 GLOBAL CHANGE / Abrupt/rapid climate change