Isotopically Light Organic Carbon in Phanerozoic Black Shales: Diagenetic, Source, or Environmental Signal?
Abstract
A curious depletion of 13C in the organic matter of marine black shales has been widely recognized ever since the advent of carbon isotope measurements half a century ago. Paleozoic and Mesozoic black shales commonly have del13C values between -29 and -26 permil, whereas modern marine organic matter has values between -22 and -18 permil. The black shale values mimic those of continental organic matter, yet sedimentary settings and Rock-Eval results indicate that the organic matter is marine in origin. This presentation will overview and discuss hypotheses to explain the isotopically light values of the black shales. First, the preferential removal of isotopically heavier organic matter components such as carbohydrates by diagenesis will be examined and shown to be wanting. Second, the possible oxidation of isotopically light methane released from clathrates that would have altered the DIC pool available to phytoplankton will be considered and also be found unlikely. A third possibility - that greater concentrations of CO2 in the greenhouse atmospheres that corresponded with deposition of many black shales allowed greater discrimination against 13C during photosynthesis - will be evaluated from del13C values of bulk carbon and of algal and land-plant biomarker molecules. Finally, the possibility that stronger stratification of the surface ocean may have magnified photic zone recycling of organic matter and reincorporation of its isotopically light carbon into fresh biomass will be considered. Although the fourth possibility is contrary to the conditions of vertical mixing of nutrients that exist in modern upwelling systems and that are responsible for their high productivity, it is consistent with the strongly stratified conditions that accompanied the high productivity that produced the Pliocene-Pleistocene sapropels of the Mediterranean Sea. Because the sapropels and most Phanerozic black shales share del15N values near 0 permil, nitrogen fixation evidently was important to most of these carbon-rich sequences, implying that well-developed surface stratification was central to their formation. On this basis, the 13C-depletion common to most Phanerozoic black shales is evidence of periods of high productivity over large areas of poorly mixed ancient oceans and constitutes an isotopic signal and an environmental scenario very different to what is known in the modern ocean.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2011
- Bibcode:
- 2011AGUFM.B14D..02M
- Keywords:
-
- 0454 BIOGEOSCIENCES / Isotopic composition and chemistry;
- 0473 BIOGEOSCIENCES / Paleoclimatology and paleoceanography;
- 1055 GEOCHEMISTRY / Organic and biogenic geochemistry;
- 4870 OCEANOGRAPHY: BIOLOGICAL AND CHEMICAL / Stable isotopes