Impact of Boundary Layer Processes on Carbon Budgets
Abstract
Previous work has shown the importance of turbulent mixing within the planetary boundary layer (PBL) and entrainment at the top of this layer for the carbon budget. In addition to the impact of carbon flux dilution by a deeper mixing layer, the modification to the vegetative environment at the land surface by PBL processes greatly impacts the vegetative response. Plants adapt to warmer, drier conditions by adjusting fluxes of carbon and water vapor in order to minimize transpiration while also maximizing carbon assimilation. However, a lot of work remains to be done in order to better simulate PBL processes and depth. Relatively few observations exist of PBL depth and even fewer exist of the processes at the PBL top. PBL depth can be estimated using the backscatter from the LIDAR onboard the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite. Using an automated method, millions of estimates can be derived to which model results can be compared. Using these estimates as well as carbon dioxide (CO2) observations from a network of towers throughout the continental United States and southern Canada, simulations from a coupled ecosystem-atmosphere model are evaluated using various strengths of an entrainment parameterization. This analysis sheds some light on the spatial heterogeneity of boundary layer processes and the influence on surface carbon fluxes and the carbon budget.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2011
- Bibcode:
- 2011AGUFM.A53D..06M
- Keywords:
-
- 0428 BIOGEOSCIENCES / Carbon cycling;
- 3307 ATMOSPHERIC PROCESSES / Boundary layer processes;
- 3322 ATMOSPHERIC PROCESSES / Land/atmosphere interactions;
- 3360 ATMOSPHERIC PROCESSES / Remote sensing