Undergraduate Research Program in Atmospheric Science: Houston Ozone Studies
Abstract
The Minority University Consortium for Earth and Space Sciences (MUCESS) composed of the University of Houston-Downtown (UHD), Medgar Evers College (City University of New York), South Carolina State University, is an undergraduate atmospheric science program funded by NSF. The program's goal is to increase the participation of minority universities in STEM activities and careers by providing students with the knowledge and skills needed to perform weather balloon launches, interpret ozone and temperature variations in the troposphere and stratosphere. Ozone profiles up to 30 km altitude are obtained via an instrument payload attached to a weather balloon. The payload instrumentation consists of an EN-SCI ECC ozonesonde and an iMET radiosonde. The data is transmitted to a base station in real time and includes pressure, temperature, humidity, and GPS coordinates This presentation is directed towards comparing our 2011 Houston data to data that either UHD or the University of Houston (UH) has collected. Our launches are primarily on Sunday, and UH's on Friday. Our primary objective is to identify ground level ozone variations on Sunday and compare with weekday levels as tropospheric ozone is largely controlled by anthropogenic activities. Ozone levels vary depending on the time of year, temperature, rain, wind direction, chemical plant activities, private and commercial traffic patterns.etc. Our limited Friday launches, supported by UH data, indicate that ground level ozone is generally elevated in contrast to Sunday data, For example, our Friday July 2011 launch detected elevated low-altitude ozone levels with ground level ozone levels of 42 nb that increased to 46 nb from 500 m to 1 km. Other peaks are at 2.7 km (44 nb) and 6km (41 nb), decreasing to 17 nb at the tropopause (12 km). Overall, Sunday low altitude ozone levels are generally lower. Our Sunday ground level ozone data ranges from a low of 25 nb on July 11 to a high of 50 nb on August 1. A combination of wind direction and industrial output variations are likely responsible for the these differences. On July 11, ozone levels decrease slightly from the ground-level values up to 2 km. Above this altitude, significant fluctuations in ozone values ranging from 20 to 40nb occur from 2 to 7 km. These fluctuations inversely correlate with humidity. Relative humidity of 20% corresponding to high ozone and 60% humidity values for low ozone. This probably reflects dilution of ozone with water vapor. In contrast, on August 1 ozone values decrease abruptly at 800 meters to 35 nb with only minor fluctuations with increasing altitude to the tropopause. For both days, the change from ground-level ozone values to the higher altitude patterns correlates with a slight temperature inversion. The Stratospheric ozone also shows a significant contrast on the two days. At 22 km altitude an ozone value of 150 nb is seen on August 1 cf the more typical 110 nb on July 11. The high value seen on August 1 is coincident with a major solar flare. These variations are typical of the range of stratospheric ozone levels seen throughout the year and may be attributable to short-term fluctuations in solar activity.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2011
- Bibcode:
- 2011AGUFM.A51A0267M
- Keywords:
-
- 0300 ATMOSPHERIC COMPOSITION AND STRUCTURE;
- 0340 ATMOSPHERIC COMPOSITION AND STRUCTURE / Middle atmosphere: composition and chemistry;
- 0365 ATMOSPHERIC COMPOSITION AND STRUCTURE / Troposphere: composition and chemistry;
- 0394 ATMOSPHERIC COMPOSITION AND STRUCTURE / Instruments and techniques