The impact of natural aerosols on Indian summer monsoon
Abstract
Atmospheric aerosols emitted from a variety of natural and anthropogenic sources impact the earth's radiation and water budget. Most of the studies in the recent past have been focusing on anthropogenic aerosols and their impact. However, natural aerosols like sea-salt and dust form the bulk of the aerosol mass loading in the atmosphere. For example, oceans cover about 70% of the earth's surface area and are a major source of sea-salt aerosols in the atmosphere. Sea-salt emission is the single largest contributor to natural aerosols and accounts for nearly half of the global aerosol optical depth. Dust emission, the counterpart over land, also contributes substantially to natural atmospheric aerosols. In addition to their direct effect on solar radiation, these aerosols also actively participate in cloud formation by acting as cloud condensation and ice nuclei and have indirect effects on clouds. Both sea-salt and dust particles are primarily formed by the action of winds that largely determine seasonal/annual variations in their source strength and atmospheric loading. Over the Indian Ocean region, especially the Arabian Sea is characterized by high winds during the monsoon that generate a large amount of sea-salt aerosols. Also these high winds mobilize large amount of dust aerosols in the northern Arabian Sea depending on wind direction. These natural aerosols together with anthropogenic emissions impact Indian monsoon precipitation. We use satellite observation of precipitation and column aerosol loading along with a global climate model (Community Atmosphere Model version 5, CAM5) to show that the variability of natural aerosols (i.e., sea-salt and dust) play an important role in modulating the Indian monsoon precipitation and the response of the monsoon system to anthropogenic aerosols. The effect of dust and sea-salt on precipitation is found to be opposite to each other. Our study suggests that the observed spatial and temporal trends in precipitation during recent decades cannot be reproduced without the inclusion of natural aerosols.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2011
- Bibcode:
- 2011AGUFM.A31F0157V
- Keywords:
-
- 0305 ATMOSPHERIC COMPOSITION AND STRUCTURE / Aerosols and particles;
- 1626 GLOBAL CHANGE / Global climate models;
- 1854 HYDROLOGY / Precipitation;
- 3311 ATMOSPHERIC PROCESSES / Clouds and aerosols