Molecular-level Analysis of Size Resolved Secondary Organic Aerosol (SOA) Samples from CALNEX Bakersfield Using High Resolution Mass Spectrometry
Abstract
This project focuses on analyzing the identities of molecules that comprise oligomers in size resolved aerosol fractions. Since oligomers are generally too large and polar to be measured by typical GC/MS analysis, soft ionization with high resolution mass spectrometry is used to extend the range of observable compounds. Samples collected with a microorifice uniform deposition impactor (MOUDI) during CALNEX Bakersfield in June 2010 have been analyzed with nanospray desorption electrospray ionization (nano-DESI) and an Orbitrap mass spectrometer. The nano-DESI is a soft ionization technique that allows molecular ions to be observed and the Orbitrap has sufficient resolution to determine the elemental composition of almost all species above the detection limit. A large fraction of SOA is made up of high molecular weight oligomers which are thought to form through acid catalyzed reactions of photo-chemically processed volatile organic compounds (VOC). The formation of oligomers must be influenced by the VOCs available, the amount of atmospheric sulfate and nitrate, and the magnitude of photo-chemical processing, among other potential influences. We present the elemental composition of chemical species in SOA in the 0.18 to 0.32 micron size range, providing the first multi-day data set for the study of these oligomers in atmospheric samples. Possible formation pathways and sources of observed compounds will be examined by comparison to other concurrent measurements at the site.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2011
- Bibcode:
- 2011AGUFM.A13C0303O
- Keywords:
-
- 0305 ATMOSPHERIC COMPOSITION AND STRUCTURE / Aerosols and particles