Pulsar-driven Jets In Supernovae, LMXBs, SS 433, And The Universe
Abstract
The model of pulsar emission through superluminally induced polarization currents (SLIP) predicts that pulsations produced by such currents, induced at many light cylinder radii by a rotating, magnetized body, as would be the case for a neutron star born within any star of more than 1.4 solar masses, will drive pulsations close to the axis of rotation. In SN 1987A, such highly collimated (<1 in 10,000) 2.14 ms pulsations, and the similarly collimated jets of particles which they drove, including 1e-6 solar masses with velocities of up to 0.95 c, were responsible for the features of its very early light (days 3 - 20), its "Mystery Spot," observed slightly later (0.5 to 0.3 c, at days 30 - 50 and after), and still later, in less collimated form, its bipolarity. The kinematics of the jets in Sco X-1 are nearly identical, while those for SS 433 are lower (0.26 c), because of the absence of velocity "boosting" via collisions of heavy elements with lighter ones, due to the nearly pure hydrogen content of the supercritical accretion. SLIP also predicts that almost all pulsars with very sharp single pulses have been detected because the Earth is in a favored direction where their fluxes diminish only as 1/distance, and this has been verified in the laboratory as well as for the Parkes Multibeam Survey. The axially driven pulsations enforce a toroidal geometry onto all early SNRs, rendering even SNe Ia unsuitable as standard candles. SLIP also specifically predicts that gamma-ray-burst afterglows will be essentially 100% pulsed at 500 Hz in their proper frame. Finally, SLIP jets from SNe of the first stars may allow galaxies to form without the need for dark matter. This work was supported in part by the Department of Energy through the Los Alamos Directed Research Grant DR20080085.
- Publication:
-
American Astronomical Society Meeting Abstracts #217
- Pub Date:
- January 2011
- Bibcode:
- 2011AAS...21733734M