Products of orthogonal projections and polar decompositions
Abstract
We characterize the sets $\XX$ of all products $PQ$, and $\YY$ of all products $PQP$, where $P,Q$ run over all orthogonal projections and we solve the problems $\arg\min\{\|P-Q\|: (P,Q) \in \cal Z\}$, for $\cal Z=\XX$ or $\YY.$ We also determine the polar decompositions and Moore-Penrose pseudoinverses of elements of $\XX.$
- Publication:
-
arXiv e-prints
- Pub Date:
- November 2010
- DOI:
- arXiv:
- arXiv:1011.5237
- Bibcode:
- 2010arXiv1011.5237C
- Keywords:
-
- Mathematics - Functional Analysis;
- 47A05