Multiplicity of solutions for homogeneous elliptic systems with critical growth
Abstract
In this paper we are concerned with the number of nonnegative solutions of the elliptic system $$ {array}{ll} -\Delta u = Q_u(u,v) + 1/2{2^*} H_u(u,v),& {in} \Omega,\vdois\ -\Delta v = Q_v(u,v) + 1/{2^*} H_v(u,v),& {in} \Omega,\vdois\ u=v=0,& {on} \partial\Omega. \leqno{(P)} $$ where $\Omega \subset \mathbb{R}^N$ is a bounded smooth domain, $N \geq 3$, $2^*:=2N/(N-2)$ and $Q_u, H_u$ and $Q_v$, $H_v$ are the partial derivatives of the homogeneous functions $Q,\,H \in C^1(\mathbb{R}^2_+,\mathbb{R})$, where $ \mathbb{R}^2_+ := [0,\infty) \times [0,\infty)$. In the proofs we apply variational methods and Ljusternik-Schnirelmann theory.
- Publication:
-
arXiv e-prints
- Pub Date:
- November 2010
- DOI:
- arXiv:
- arXiv:1011.4774
- Bibcode:
- 2010arXiv1011.4774F
- Keywords:
-
- Mathematics - Analysis of PDEs