(k+1)-sums versus k-sums
Abstract
A $k$-sum of a set $A\subseteq \mathbb{Z}$ is an integer that may be expressed as a sum of $k$ distinct elements of $A$. How large can the ratio of the number of $(k+1)$-sums to the number of $k$-sums be? Writing $k\wedge A$ for the set of $k$-sums of $A$ we prove that \[ \frac{|(k+1)\wedge A|}{|k\wedge A|}\, \le \, \frac{|A|-k}{k+1} \] whenever $|A|\ge (k^{2}+7k)/2$. The inequality is tight -- the above ratio being attained when $A$ is a geometric progression. This answers a question of Ruzsa.
- Publication:
-
arXiv e-prints
- Pub Date:
- November 2010
- DOI:
- arXiv:
- arXiv:1011.4495
- Bibcode:
- 2010arXiv1011.4495G
- Keywords:
-
- Mathematics - Number Theory;
- Mathematics - Combinatorics
- E-Print:
- 5 pages