The distribution functions of $\sigma(n)/n$ and $n/\phi(n)$, II
Abstract
Let $\sigma(n)$ be the sum of the positive divisors of $n$, and let $A(t)$ be the natural density of the set of positive integers $n$ satisfying $\sigma(n)/n \ge t$. We give an improved asymptotic result for $\log A(t)$ as $t$ grows unbounded. The same result holds if $\sigma(n)/n$ is replaced by $n/\phi(n)$, where $\phi(n)$ is Euler's totient function.
- Publication:
-
arXiv e-prints
- Pub Date:
- November 2010
- DOI:
- arXiv:
- arXiv:1011.4262
- Bibcode:
- 2010arXiv1011.4262W
- Keywords:
-
- Mathematics - Number Theory;
- 11N25;
- 11N60
- E-Print:
- 11 pages