A symmetry result on Reinhardt domains
Abstract
We show the following symmetry property of a bounded Reinhardt domain $\Omega$ in $\mathbb{C}^{n+1}$: let $M=\partial\Omega$ be the smooth boundary of $\Omega$ and let $h$ be the Second Fundamental Form of $M$; if the coefficient $h(T,T)$ related to the characteristic direction $T$ is constant then $M$ is a sphere. In Appendix we state the result from an hamiltonian point of view.
- Publication:
-
arXiv e-prints
- Pub Date:
- November 2010
- DOI:
- arXiv:
- arXiv:1011.4119
- Bibcode:
- 2010arXiv1011.4119M
- Keywords:
-
- Mathematics - Differential Geometry;
- Mathematics - Complex Variables