Hadron-hadron interaction from SU(2) lattice QCD
Abstract
We evaluate interhadron interactions in two-color lattice QCD from Bethe-Salpeter amplitudes on the Euclidean lattice. The simulations are performed in quenched SU(2) QCD with the plaquette gauge action at β=2.45 and the Wilson quark action. We concentrate on S-wave scattering states of two scalar diquarks. Evaluating different flavor combinations with various quark masses, we try to find out the ingredients in hadronic interactions. Between two scalar diquarks (uCγ5d, the lightest baryon in SU(2) system), we observe repulsion in short-range region, even though present quark masses are not very light. We define and evaluate the quark-exchange part in the interaction, which is induced by adding quark-exchange diagrams, or equivalently, by introducing Pauli-blocking among some of quarks. The repulsive force in short-distance region arises only from the quark-exchange part and disappears when quark-exchange diagrams are omitted. We find that the strength of repulsion grows in light quark-mass regime, and its quark-mass dependence is similar to or slightly stronger than that of the color-magnetic interaction by one-gluon-exchange (OGE) processes. It is qualitatively consistent with the constituent-quark-model picture that a color-magnetic interaction among quarks is the origin of repulsion. We also find a universal long-range attractive force, which enters in any flavor channels of two scalar diquarks and whose interaction range and strength are quark-mass independent. The weak quark-mass dependence of interaction ranges in each component implies that meson-exchange contributions are small and subdominant, and the other contributions, e.g., flavor-exchange processes, color-Coulomb, or color-magnetic interactions, are considered to be predominant, in the quark-mass range we evaluated.
- Publication:
-
Physical Review D
- Pub Date:
- November 2010
- DOI:
- arXiv:
- arXiv:0912.0691
- Bibcode:
- 2010PhRvD..82i4506T
- Keywords:
-
- 12.38.Gc;
- 12.39.Pn;
- Lattice QCD calculations;
- Potential models;
- High Energy Physics - Lattice
- E-Print:
- 14 pages, 20 figures