Boltzmann brains and the scale-factor cutoff measure of the multiverse
Abstract
To make predictions for an eternally inflating “multiverse,” one must adopt a procedure for regulating its divergent spacetime volume. Recently, a new test of such spacetime measures has emerged: normal observers—who evolve in pocket universes cooling from hot big bang conditions—must not be vastly outnumbered by “Boltzmann brains”—freak observers that pop in and out of existence as a result of rare quantum fluctuations. If the Boltzmann brains prevail, then a randomly chosen observer would be overwhelmingly likely to be surrounded by an empty world, where all but vacuum energy has redshifted away, rather than the rich structure that we observe. Using the scale-factor cutoff measure, we calculate the ratio of Boltzmann brains to normal observers. We find the ratio to be finite, and give an expression for it in terms of Boltzmann brain nucleation rates and vacuum decay rates. We discuss the conditions that these rates must obey for the ratio to be acceptable, and we discuss estimates of the rates under a variety of assumptions.
- Publication:
-
Physical Review D
- Pub Date:
- September 2010
- DOI:
- arXiv:
- arXiv:0808.3778
- Bibcode:
- 2010PhRvD..82f3520D
- Keywords:
-
- 98.80.Cq;
- Particle-theory and field-theory models of the early Universe;
- High Energy Physics - Theory;
- Astrophysics - Cosmology and Nongalactic Astrophysics;
- General Relativity and Quantum Cosmology
- E-Print:
- 32 pp, 2 figs. Modified to conform to the version accepted by Phys. Rev. D. The last paragraph of Sec. V-A, about Boltzmann brains in Minkowski space, has been significantly enlarged. Two sentences were added to the introduction concerning the classical approximation and the hope of finding a motivating principle for the measure. Several references were added