Study and Implementation of the End-to-End Data Pipeline for the Virtis Imaging Spectrometer Onboard Venus Express: "From Science Operations Planning to Data Archiving and Higher Level Processing"
Abstract
This PhD Thesis describes the activities performed during the Research Program undertaken for two years at the Istituto Nazionale di AstroFisica in Rome, Italy, as active member of the VIRTIS Technical and Scientific Team, and one additional year at the European Space Astronomy Center in Madrid, Spain, as member of the Mars Express Science Ground Segment.
This document will show a study of all sections of the Science Ground Segment of the Venus Express mission, from the planning of the scientific operations, to the generation, calibration and archiving of the science data, including the production of valuable high level products. We will present and discuss here the end-to-end diagram of the ground segment from the technical and scientific point of view, in order to describe the overall flow of information: from the original scientific requests of the principal investigator and interdisciplinary teams, up to the spacecraft, and down again for the analysis of the measurements and interpretation of the scientific results. These scientific results drive to new and more elaborated scientific requests, which are used as feedback to the planning cycle, closing the circle. Special attention is given here to describe the implementation and development of the data pipeline for the VIRTIS instrument onboard Venus Express. During the research program, both the raw data generation pipeline and the data calibration pipeline were developed and automated in order to produce the final raw and calibrated data products from the input telemetry of the instrument. The final raw and calibrated products presented in this work are currently being used by the VIRTIS Science team for data analysis and are distributed to the whole scientific community via the Planetary Science Archive. More than 20,000 raw data files and 10,000 calibrated products have already been generated after almost 4 years of mission. In the final part of the Thesis, we will also present some high level data processing methods developed for the Mapping channel of the VIRTIS instrument. These methods have been implemented for the generation of high level global maps of measured radiance over the whole planet, which can then be used for the understanding of the global dynamics and morphology of the Venusian atmosphere. This method is currently being used to compare different emissions probing at different altitudes from the low cloud layers up to the upper mesosphere, by using the averaged projected values of radiance observed by the instrument, such as the near infrared windows at 1.7 μm and 2.3μm, the thermal region at 3.8μm and 5μm plus the analysis of particular emissions in the night and day side of the planet. This research has been undertaken under guidance and supervision of Giuseppe Piccioni, VIRTIS co-Principal Investigator, with support of the entire VIRTIS technical and scientific team, in particular of the Archiving team in Paris (LESIA-Meudon). The work has also been done in close collaboration with the Science and Mission Operations Centres in Madrid and Darmstadt (European Space Agency), the EGSE software developer (Techno Systems), the manufacturer of the VIRTIS instrument (Galileo Avionica) and the developer of the VIRTIS onboard software (DLR Berlin). The outcome of the technical and scientific work presented in this thesis is currently being used by the VIRTIS team to continue the investigations on the Venusian atmosphere and plan new scientific observations to improve the overall knowledge of the solar system. At the end of this document we show some of the many technical and scientific contributions, which have already been published in several international journals and conferences, and some articles of the European Space Agency used for public outreach.- Publication:
-
Ph.D. Thesis
- Pub Date:
- April 2010
- Bibcode:
- 2010PhDT.........3C
- Keywords:
-
- Venus Express;
- VIRTIS;
- Imaging Spectrometers;
- Spectroscopy;
- Remote Sensing;
- Atmosphere;
- Data Calibration;
- Data Handling