Impact of 3D features on ion collisional transport in ITER
Abstract
The influence of magnetic ripple on ion collisional transport in ITER (Shimada et al 2007 Progress in the ITER Physics Basis: chapter 1. Overview and summary Nucl. Fusion 47 S1) is calculated using the Monte Carlo orbit code ISDEP (Castejón et al 2007 Plasma Phys. Control. Fusion 49 753). The ripple is introduced as a perturbation to the 2D equilibrium configuration of the device, given by the HELENA code (Huysmans 1991 CP90 Conf. on Computational Physics (Amsterdam, The Netherlands, 1990) (Singapore: World Scientific) p 371), obtaining a 3D configuration. Since the intensity of the ripple can change depending on the design of the test blanket modules that will be introduced in ITER, a scan of the ripple intensity has been performed to study the changes in confinement properties. The main result is that an increase in the perturbation leads to a degradation of the confinement due to an increase in the radial fluxes. The selective ion losses cause modifications in the ion distribution function. In this work most of the computing time has been provided by a new Citizen Supercomputer called Ibercivis.
- Publication:
-
Nuclear Fusion
- Pub Date:
- December 2010
- DOI:
- Bibcode:
- 2010NucFu..50l5007B