Assembly of a metal-organic framework by sextuple intercatenation of discrete adamantane-like cages
Abstract
Metal-organic frameworks form a unique class of multifunctional hybrid materials and have myriad applications, including gas storage and catalysis. Their structure is usually achieved through the infinite coordination of metal ions and multidentate organic ligands by means of strong covalent bonds. Threaded molecules such as catenanes and rotaxanes have largely been restricted to comprising components of two-dimensional interlocking rings or polygons. There are very few examples of the catenation of polyhedral cages. Although it has been postulated that the infinite extended architecture can be obtained from the polycatenation of a discrete cage based on such threading, this has not been documented to date. Here we describe an infinite three-dimensional metal-organic framework composed of catenated polyhedral cages, in which the framework is achieved by mechanical interlocking of all of the vertices of the cages. The three-dimensional polycatenated framework shows twofold self-interpenetration in its crystal packing. The penetration of polycatenanes creates nanosized voids into which the Keggin polyoxometalate anions are perfectly accommodated as counteranions.
- Publication:
-
Nature Chemistry
- Pub Date:
- June 2010
- DOI:
- 10.1038/nchem.618
- Bibcode:
- 2010NatCh...2..461K