Local vapor transport synthesis of zinc oxide nanowires for ultraviolet-enhanced gas sensing
Abstract
A novel local vapor transport technique via induction heating is presented to enable selective, localized synthesis and self-assembly of nanowires, providing a simple and fast method for the direct integration of nanowires into functional devices. The single-crystalline zinc oxide (ZnO) nanowires are grown locally across the silicon-on-insulator microelectrodes within minutes, and the enhancement of gas sensing of ZnO nanowires is demonstrated under ultraviolet (UV) illumination at room temperature. Experiments indicate that when suspended nanowires are exposed to UV light, a twelve-fold increase in conductance and a near five-fold improvement in oxygen response are measured. Furthermore, the UV-enhanced transient responses exhibit a two-level photocurrent decay attributed to carrier recombination and oxygen readsorption. As such, the local vapor transport synthesis and UV-enhanced sensing scheme could provide a promising approach for the construction of miniaturized and highly responsive nanowire-based gas sensors.
- Publication:
-
Nanotechnology
- Pub Date:
- December 2010
- DOI:
- Bibcode:
- 2010Nanot..21W5502L