On the energy flux in acoustic waves in the solar atmosphere .
Abstract
The energy supply for the radiative losses of the quiet solar chromosphere is studied. Time sequences from quiet Sun disc centre were obtained with the ``Göttingen'' Fabry-Pérot spectrometer at the Vacuum Tower Telescope, Observatorio del Teide/Tenerife, in the non-magnetic Fe I 5576 Å line. The data were reconstructed with speckle methods. The velocities as measured at the line minimum were subjected to Fourier and wavelet analysis. The energy fluxes were corrected for the transmission of the solar atmosphere. We find an energy flux of ∼ 3 000 W m-2 at a height of h=250 km. Approximately 2/3 of it is carried by waves in the 5-10 mHz range, and 1/3 in the 10-20 mHz band. The waves occur predominantly above inter-granular areas. We speculate that the acoustic flux in waves with periods shorter than the acoustic cutoff period (U≈190 s) can contribute to the basal heating of the solar chromosphere, in addition to atmospheric gravity waves.
- Publication:
-
Memorie della Societa Astronomica Italiana
- Pub Date:
- 2010
- Bibcode:
- 2010MmSAI..81..757B
- Keywords:
-
- Waves;
- Techniques: high angular resolution;
- Sun: chromosphere