Luminous X-ray Active Galactic Nuclei in Clusters of Galaxies
Abstract
We present a study of X-ray active galactic nucleus (AGN) overdensities in 16 Abell clusters, within the redshift range 0.073 < z < 0.279, in order to investigate the effect of the hot inter-cluster environment on the triggering of the AGN phenomenon. The X-ray AGN overdensities, with respect to the field expectations, were estimated for sources with Lx >= 1042 erg s-1 (at the redshift of the clusters) and within an area of 1 h -1 72 Mpc radius (excluding the core). To investigate the presence or absence of a true enhancement of luminous X-ray AGNs in the cluster area, we also derived the corresponding optical galaxy overdensities, using a suitable range of r-band magnitudes. We always find the latter to be significantly higher (and only in two cases roughly equal) with respect to the corresponding X-ray overdensities. Over the whole cluster sample, the mean X-ray point-source overdensity is a factor of ~4 less than that corresponding to bright optical galaxies, a difference which is significant at a >0.995 level, as indicated by an appropriate student's t-test. We conclude that the triggering of luminous X-ray AGNs in rich clusters is strongly suppressed. Furthermore, searching for optical Sloan Digital Sky Survey counterparts of all the X-ray sources, associated with our clusters, we found that about half appear to be background QSOs, while others are background and foreground AGNs or stars. The true overdensity of X-ray point sources, associated with the clusters, is therefore even smaller than what our statistical approach revealed.
- Publication:
-
The Astrophysical Journal
- Pub Date:
- May 2010
- DOI:
- 10.1088/2041-8205/714/2/L181
- arXiv:
- arXiv:1003.0753
- Bibcode:
- 2010ApJ...714L.181K
- Keywords:
-
- galaxies: active;
- galaxies: clusters: general;
- X-rays: galaxies;
- X-rays: galaxies: clusters;
- X-rays: general;
- Astrophysics - Cosmology and Nongalactic Astrophysics;
- Astrophysics - High Energy Astrophysical Phenomena
- E-Print:
- accepted for publication in ApJ Letters