Coexisting Flux Rope and Dipped Arcade Sections Along One Solar Filament
Abstract
We compute the three-dimensional magnetic field of an active region in order to study the magnetic configuration of active region filaments. The nonlinear force-free field model is adopted to compute the magnetic field above the photosphere, where the vector magnetic field was observed by THEMIS/MTR on 2005 May 27. We propose a new method to remove the 180° ambiguity of the transverse field. Next, we analyze the implications of the preprocessing of the data by minimizing the total force and torque in the observed vector fields. This step provides a consistent bottom boundary condition for the nonlinear force-free field model. Then, using the optimization method to compute the coronal field, we find a magnetic flux rope along the polarity inversion line. The magnetic flux rope aligns well with part of an Hα filament, while the total distribution of the magnetic dips coincides with the whole Hα filament. This implies that the magnetic field structure in one section of the filament is a flux rope, while the other is a sheared arcade. The arcade induced a left-bearing filament in the magnetic field of negative helicity, which is opposite to the chirality of barbs that a flux rope would induce in a magnetic field of the same helicity sign. The field strength in the center of the flux rope is about 700 G, and the twist of the field lines is ~1.4 turns.
- Publication:
-
The Astrophysical Journal
- Pub Date:
- May 2010
- DOI:
- 10.1088/0004-637X/714/1/343
- Bibcode:
- 2010ApJ...714..343G
- Keywords:
-
- Sun: corona;
- Sun: filaments;
- prominences;
- Sun: magnetic topology;
- Sun: photosphere