Galaxy Stellar Mass Assembly Between 0.2 < z < 2 from the S-COSMOS Survey
Abstract
We follow the galaxy stellar mass assembly by morphological and spectral type in the COSMOS 2 deg2 field. We derive the stellar mass functions and stellar mass densities from z = 2 to z = 0.2 using 196,000 galaxies selected at F 3.6 μm > 1 μJy with accurate photometric redshifts (σ_{(z_phot-z_spec)/(1+z_spec)}=0.008 at i + < 22.5). Using a spectral classification, we find that z ~ 1 is an epoch of transition in the stellar mass assembly of quiescent galaxies. Their stellar mass density increases by 1.1 dex between z = 1.5-2 and z = 0.8-1 (Δt ~ 2.5 Gyr), but only by 0.3 dex between z = 0.8-1 and z ~ 0.1 (Δt ~ 6 Gyr). Then, we add the morphological information and find that 80%-90% of the massive quiescent galaxies (log M ∼ 11) have an elliptical morphology at z < 0.8. Therefore, a dominant mechanism links the shutdown of star formation and the acquisition of an elliptical morphology in massive galaxies. Still, a significant fraction of quiescent galaxies present a Spi/Irr morphology at low mass (40%-60% at log M∼ 9.5), but this fraction is smaller than predicted by semi-analytical models using a "halo quenching" recipe. We also analyze the evolution of star-forming galaxies and split them into "intermediate activity" and "high activity" galaxies. We find that the most massive "high activity" galaxies end their high star formation rate phase first. Finally, the space density of massive star-forming galaxies becomes lower than the space density of massive elliptical galaxies at z < 1. As a consequence, the rate of "wet mergers" involved in the formation of the most massive ellipticals must decline very rapidly at z < 1, which could explain the observed slow down in the assembly of these quiescent and massive sources.
Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by AURA Inc., under NASA contract NAS 5-26555. Also based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under NASA contract 1407. Also based on data collected at: the Subaru Telescope, which is operated by the National Astronomical Observatory of Japan; the XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and NASA; the European Southern Observatory under Large Program 175.A-0839, Chile; Kitt Peak National Observatory, Cerro Tololo Inter-American Observatory, and the National Optical Astronomy Observatory, which are operated by the Association of Universities for Research in Astronomy, Inc. (AURA) under cooperative agreement with the National Science Foundation; and the Canada-France-Hawaii Telescope with MegaPrime/MegaCam operated as a joint project by the CFHT Corporation, CEA/DAPNIA, the NRC and CADC of Canada, the CNRS of France, TERAPIX, and the University of Hawaii.- Publication:
-
The Astrophysical Journal
- Pub Date:
- February 2010
- DOI:
- 10.1088/0004-637X/709/2/644
- arXiv:
- arXiv:0903.0102
- Bibcode:
- 2010ApJ...709..644I
- Keywords:
-
- galaxies: evolution;
- galaxies: formation;
- galaxies: luminosity function;
- mass function;
- Astrophysics - Cosmology and Extragalactic Astrophysics
- E-Print:
- 37 pages, 29 figures, accepted for publication in ApJ