Physics-Based Model Driven by Plasma Drifts Obtained From the C/NOFS Satellite
Abstract
An important parameter in determining low-latitude ionospheric plasma density is the plasma drift. Two instruments on-board the Communication/Navigation Outage System (C/NOFS) satellite were designed to directly or indirectly measure the plasma drifts: the Ion Velocity Drift Meter (IVM) and the Vector Electric Field Instrument (VEFI). By using the electric field measurements obtained from VEFI, the physics-based model (PBMOD) developed at the Air Force Research Laboratory has been shown to qualitatively reproduce post-midnight density trenches observed in June 2008. In this presentation, we will demonstrate simulation results obtained from PBMOD driven by averaged IVM [Stoneback and Heelis, 2010] and VEFI data [Pfaff et al., 2010]. A wave-4 structure has been identified in averaged IVM data. Based on our preliminary study, the ion density output from IVM-driven PBMOD also presents a similar wave-four structure in geographical longitudes (GLON). In addition, the lowest density region occurs near 300 degree GLON for all seasons, where the magnetic equator declination is largest. Model results will be compared with those driven by the Scherliess-Fejer drift model, as well as in-situ density measurements obtained from the Planar Langmuir Probe (PLP). Stoneback, R. and R. Heelis (2010), Equatorial ion densities and meridional ion drifts in 2009, C/NOFS Science Workshop at Breckenridge, Colorado. Pfaff, R. , H. Freudenreich, J. Klenzing, D. Rowland, and K. Bromund (2010), DC electric fields as observed on the C/NOFS satellite during solar minimum conditions, C/NOFS Science Workshop at Breckenridge, Colorado.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2010
- Bibcode:
- 2010AGUFMSA51B1614S
- Keywords:
-
- 2415 IONOSPHERE / Equatorial ionosphere;
- 2437 IONOSPHERE / Ionospheric dynamics;
- 2447 IONOSPHERE / Modeling and forecasting