Anchoring Atmospheric Density Models Using Observed Shuttle Plume Emissions
Abstract
Atmospheric number densities at a given low-earth orbit (LEO) altitude can vary by more than an order of magnitude, depending on such parameters as diurnal variations and solar activity. The MSIS atmospheric model, which includes these dependent variables as input, is reported as being accurate to ±15%. Improvement to such models requires accurate direct atmospheric measurement. Here, a means of anchoring atmospheric models is offered through measuring the size and shape of atomic line or molecular band radiance resulting from the atmospheric interaction from rocket engine plumes or gas releases in LEO. Many discrete line or band emissions, ranging from the infrared to the ultraviolet may be suitable. For this purpose we are focusing on NH(A→X), centered at 316 nm. This emission is seen in the plumes of the Shuttle Orbiter PRCS engines, is expected in the plume of any amine fueled engine, and can be observed from remote sensors in space or on the ground. The atmospheric interaction of gas releases or plumes from spacecraft in LEO are understood by comparison of observed radiance with that predicted by Direct Simulation Monte Carlo (DSMC) models. The recent Extended Variable Hard Sphere (EVHS) improvements in treating hyperthermal collisions has produced exceptional agreement between measured and modeled steady-state Space Shuttle OMS and PRCS 190-250 nm Cameron band plume radiance from CO(a→X), which is understood to result from a combination of two- and three-step mechanisms. Radiance from NH(A→X) in far field plumes is understood to result from a simpler single-step process of the reaction of a minor plume species with atomic oxygen, making it more suitable for use in determining atmospheric density. It is recommended that direct retrofire burns of amine fueled engines be imaged in a narrow band from remote sensors to reveal atmospheric number density. In principal the simple measurement of the distance between the engine exit and the peak in the steady-state radiance from LEO spacecraft can indicate atmospheric density to ~1% accuracy. Use of this radiance requires calibration by an accurate independent measurement associated with a well-resolved steady-state image of it.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2010
- Bibcode:
- 2010AGUFMSA32A..09D
- Keywords:
-
- 0350 ATMOSPHERIC COMPOSITION AND STRUCTURE / Pressure;
- density;
- and temperature;
- 3333 ATMOSPHERIC PROCESSES / Model calibration;
- 3359 ATMOSPHERIC PROCESSES / Radiative processes