Holocene Climate Variability in the Central North Pacific: An Organic Geochemical Record from Ka'au Crater Swamp, O'ahu, Hawai'i
Abstract
North Pacific climate is known to have varied during the Holocene, with significant “downstream” effects on the regional climate and hydrology of western North America. Evidence from paleoclimatic studies along the northeast Pacific margin hints at several broad-scale regime shifts since the early Holocene, with spatial expressions analogous to those observed during phase shifts of the modern ENSO and PDO, though occurring on much longer (centennial to millennial) timescales. Nonetheless, the timing, magnitude and spatial patterns of Holocene rearrangements in oceanic and atmospheric circulation in the North Pacific remain incompletely defined. The main Hawaiian Islands (19 - 22 °N, 155 - 160 °W) are uniquely situated to “sample” climate variability in the subtropical, central North Pacific. Precipitation in Hawai’i is strongly influenced by the seasonal migration of the Pacific Anticyclone and the associated trade winds, and, during the winter, the frequency and intensity of westerly moisture-bearing storms. On interannual to decadal timescales, basin-wide circulation changes related to ENSO and PDO modulate trade wind strength and the occurrence of winter storm patterns, leading to local variations in precipitation. Terrestrial paleoclimatic records from Hawai’i are rare, but of great potential value to reconstruct aspects of central North Pacific atmospheric circulation during the Holocene, including the influence of the tropical ENSO system. In this study we present initial results from a 4.5 m, ~14 kyr sedimentary sequence recovered from Ka’au Crater Swamp, located near the leeward crest of the Ko’olau range of southeastern O’ahu, in a zone of high precipitation (>330 cm/yr). We utilize carbon and nitrogen elemental abundances (TOC, TN, C/N) and isotopic compositions (δ13C, δ15N) of bulk organic matter and ratios of biomarker compounds to reconstruct changes in vegetation, organic matter sources, and biogeochemical cycling in relation to climatic variables. Variation in elemental abundances and ratios, particularly in the mid-Holocene, suggest a sensitive response to climate. In addition, we evaluate the use of compound-specific hydrogen isotope (δD) measurements on plant leaf-wax compounds extracted from the sediment as a means of reconstructing paleohydrologic conditions and moisture sources to the site. Leaf-wax δD at Ka’au Crater is affected by changes in the isotopic composition precipitation as well as local water balance, both of which respond to variations in trade wind strength and the balance among the several winter circulation patterns.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2010
- Bibcode:
- 2010AGUFMPP51A1582S
- Keywords:
-
- 0454 BIOGEOSCIENCES / Isotopic composition and chemistry;
- 4914 PALEOCEANOGRAPHY / Continental climate records;
- 4922 PALEOCEANOGRAPHY / El Nino;
- 4924 PALEOCEANOGRAPHY / Geochemical tracers