Calcareous sinter from ancient aqueducts as a source of data in paleoclimate, tectonics and hydrology
Abstract
During the lifetime the Roman Empire (300BC-400AD), about 1200 major aqueducts were built to supply cities in the Mediterranean with drinking water. The ruins of many of these channels contain sinter (calcium carbonate), which was deposited at a rate of 0.5-5 mm/year over the life of the aqueduct, usually 50-200 but up to 1000 years. Calcareous sinter inside the ancient aqueduct channels can give important insight into paleoclimatology in the form of temperature and rainfall, reflect palaeohydrology of water, water chemistry, flow rate, bacterial activity and source area of the water. This type of data is important to build climate models and to understand earthquake and flood patterns in the Mediterranean, and can be a new, additional source of information besides speleothems, travertine and tufa deposits. In our study we focus on Mediterranean climate patterns, and selected four aqueduct sites from Southern Turkey, Greece and Italy. The calcareous sinter deposits may reflect annual or subannual lamination characterized by alternating light, dense, coarse-grained and dark, porous, microcrystalline layers which are thought to represent winter and summer conditions respectively. Moreover, abrupt changes in the sequence of lamination can be a signal of natural hazards such as earthquakes or flood events. Deposits from the aqueduct of Patara (Southern Turkey) show 40-50 laminae couples, which may be annual layers. δ18O and δ 13C stable isotope data indicate high cyclicity within the sinter samples from Patara during the Roman period. Higher δ18O values correspond with dark, porous layers and lower values with light, dense layers. Major geochemical analyses show similar seasonal changes. Electron microprobe study shows that within dark laminae, detrital Fe, Mg, K, Al and Si are enriched whereas the light layers have high Ca content. Trace element analyses by LA-ICP-MS also indicate higher Mg/Ca and Sr/Ca values in the dark layers, which can be interpreted in terms of temperature or precipitation changes. The gradient in major and trace element distribution and in oxygen and carbon isotope cyclicity from dark to light laminations may reflect changes in the amount of precipitation, temperature, sediment load and bacterial activity. These first promising results lead us to work on additional sites to attempt correlation over the whole Roman Empire. Calcareous sinter from the roman Eifel aqueduct
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2010
- Bibcode:
- 2010AGUFMPP43B1675S
- Keywords:
-
- 0473 BIOGEOSCIENCES / Paleoclimatology and paleoceanography;
- 1041 GEOCHEMISTRY / Stable isotope geochemistry;
- 1065 GEOCHEMISTRY / Major and trace element geochemistry;
- 1616 GLOBAL CHANGE / Climate variability