Holocene relative sea level changes in Greenland: a review
Abstract
During the Holocene marked relative sea-level changes have taken place in the ice-free parts of Greenland. Already in 1776 it was reported that Thule winter houses and Norse ruins were partly inundated by the sea, and in 1962 the first emergence curve from Greenland was published. This has been followed by reconstruction of many other emergence curves. During the last ice age, large volumes of water were stored in the ice sheets. When the ice melted global sea level rose. In Greenland the ice sheet shrank in size, and the following emergence of the land surpassed the global sea level rise. Raised beach ridges, deltas and marine deposits are widespread in Greenland, and the uppermost form the marine limit, above which fresh-looking till deposits and perched boulders can be found. The marine limit has been mapped at numerous sites in Greenland, and the highest is at about 140 metres above the present sea level. In general, the marine limit is highest in those areas that were released from the largest load of ice. In other Arctic regions, well-constrained sea level curves have been constructed from dated drift-wood samples or whale bones from raised beaches. However, both driftwood and whale bones are rare in Greenland, and most curves have been developed from dated shells of bivalves. In the past years, isolation basins have increasingly been used to reconstruct sea level changes after the last deglaciation. Isolation basins are formed when the threshold of marine basins are lifted up above sea level. The use of this method requires that a series of lakes can be sampled at different elevations below the marine limit. Sampling of marine basins in shallow waters has also shown that many lakes have been inundated by the sea, and by dating the transgression horizons in the sediment sequences and by determining the depth of the sill, it is possible to work out curves for relative sea level rises during the past millennia. The global sea level has been fairly stable during the late Holocene, and the relative sea level rise seen in Greenland may be due to growth of the ice sheet, or related to the decay of the Laurentide ice sheet in North America. New shore-line displacement curves are presented for different parts of Greenland, and their implications with respect to the history of the Greenland ice sheet will be discussed. Comparisons between sea level data and curves based on geophysical modelling often show poor match, and it appears that the models have underestimated the rate and magnitude of ice load changes.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2010
- Bibcode:
- 2010AGUFMPP14B..08B
- Keywords:
-
- 9350 GEOGRAPHIC LOCATION / North America;
- 9604 INFORMATION RELATED TO GEOLOGIC TIME / Cenozoic