Generation of Wind Waves in the Persian Gulf: A Numerical Investigation
Abstract
The Persian Gulf is a long shallow basin located between the Arabian Peninsula and Iran. Wind-wave generation processes in the region are often affected by the shamal, a strong wind caused by the passage of cold fronts over the mountains of Turkey and Kurdistan. This can set up sudden energetic wind seas, hampering marine traffic. It is not immediately clear whether present wind-wave models can predict this intense, short-term growth and evolution under these conditions. Furthermore, few wave measurements or models studies have been performed in this area. In advance of a wind-wave generation experiment to be conducted off the Qatar coast, we performed a climatological study of the wind wave environment in the Persian Gulf. Using the SWAN wave model as a baseline of the state of the art, five years (2004-2008)of wind field model hindcasts from COAMPS are used as forcing.To investigate the sensitivity of the results to bathymetry, the climatological analysis was run twice more, with refraction or wave breaking deactivated, in turn. The results do not show significant differences with and without refraction, which implies the wind-wave process in Persian Gulf is less dominated by the variation of bathymetry. However the results show that a large amount of wave is dissipated by wave breaking. Wide, flat and shallow bathymetry in Persian Gulf results in a long-fetch scenario, particularly for waves arriving from the northwest. It implies that long period wind-generated waves can be fully generated in this region. Wave height is therefore fully grown by the long-fetch condition, so as to lead in higher possibility of wave breaking and energy dissipation.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2010
- Bibcode:
- 2010AGUFMOS44B..02L
- Keywords:
-
- 4546 OCEANOGRAPHY: PHYSICAL / Nearshore processes;
- 4560 OCEANOGRAPHY: PHYSICAL / Surface waves and tides