Wave attenuation and sediment transport over an intertidal sand flat on the Fraser River Delta (Invited)
Abstract
This paper describes the results of two instrument field studies to examine sediment transport processes and wave attenuation across Roberts Bank, a sandy intertidal bank on the Fraser River Delta. The field work was completed as part of a three-year study of the sensitivity of Roberts Bank to sea level rise and changing storminess. It was hypothesized that the response of the mudflats and salt marshes along the landward margin of the delta were dependent on the ability of the fronting sand flat to attenuate wave height and energy. The attenuation of wave height and energy was monitored at four stations along a shore-normal transect between December 23, 2003 and February 10, 2004. The attenuation varied with the relative wave height ratio (Hs h-1) along the seaward margin, with dissipation increasing as water depths decrease and/or incident wave heights increase. Under the most dissipative conditions observed (Hs h-1 ≈ 0.25), the exponential decay coefficient reached 0.00045. This decay coefficient is an order of magnitude smaller than predicted by a simple wave transformation model due to the relatively large wind fetch over the sand flat. Despite the maintenance of wave energy, the range of wave heights remains constrained in the landward direction, with the frequency of waves capable of entraining sediment on the sand flat decreasing from 11% at the outer flat to 2% at the inner stations. In response, bed elevation change and depth of sediment activation are greatest at the seaward margin and decrease exponentially landward. It is argued that the sand flat provides a natural barrier that defines the extent of mudflat development by limiting the potential for sediment resuspension and morphological change on the mudflat. The ability of the sand flat to provide continued protection to the mudflats and salt marshes depends on how it will respond to change in sea level and storminess. A comparison of the dimensionless, current-induced skin friction with the critical skin friction for the initiation of sediment motion suggests that the currents are only capable of entraining sediment briefly with the ebbing tide or when enhanced by the wind. Since these wind-generated currents are associated with storm waves, which typically exceed the critical skin friction, they have a disproportionately large impact on the direction of the sediment transport. An energetics-based model, driven by locally measured near-bottom currents, is used to characterize the rate and direction of bedload and suspended load transport. The largest transport rates were predicted in response to storm waves and were initially directed onshore with weak oscillatory transport and alongshore by wind-generated currents that turned offshore as the ebbing currents strengthened. The integrated transport (over the duration of the study) was predicted to be weakly offshore, but this is ascribed to the coincidental occurrence of storm activity with the ebbing tide. It is argued that if storm waves were equally distributed between the flood and ebb phases of the tide, the wind-generated currents and oscillatory transport would lead to a partly onshore-directed net transport during storms, which may contribute to sand flat accretion and maintenance of form as it migrates landward in response to sea level rise.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2010
- Bibcode:
- 2010AGUFMOS34B..04H
- Keywords:
-
- 4546 OCEANOGRAPHY: PHYSICAL / Nearshore processes