Ocean-Wave Dynamics Analysis during Hurricane Ida and Norida Using a Fully Coupled Modeling System
Abstract
Extreme storms, such as hurricanes and extratropical storms play a dominant role in shaping the beaches of the East and Gulf Coasts of the United States. Future tropical depressions will be more intense than in the present climate (Assessment Report of IPCC, 2007) and therefore coastal areas are likely to become more susceptible to their effects. The major damage caused by these extreme events is associated with the duration of the storm, storm intensity, waves, and the total water levels reached during the storm. Numerical models provide a useful approach to study the spatial and temporal distribution of these parameters. However, the correct estimation of the total water levels and wind wave heights through numerical modeling requires accurate representation of the air-sea interface dynamics. These processes are highly complex due to the variable interactions between winds, ocean waves and currents near the sea surface. In the present research we use the COAWST (Coupled Ocean-Atmosphere-Wave-Sediment Transport) modeling system (Warner et al., 2010) to address the key role of the atmosphere-ocean-wave interactions during Hurricane Ida and its posterior evolution to NorIda, November 2009. This northeastern storm was one of the most costly in the past two decades and likely in the top five of the past century. One interesting aspect of the considered period is that it includes two very different atmospheric extreme conditions, a hurricane and a northeastern storm, developed in regions with very different oceanographic characteristics. By performing a suite of numerical runs we are able to isolate the effect of the interaction terms between the atmosphere (WRF model), the ocean (ROMS model) and the wave propagation and generation model (SWAN). Special attention is given to the role of the ocean surface roughness and high resolution SST fields on the atmospheric boundary layers dynamics and consequently these effects on the wind wave generation, surface currents and storm surge. The effects of ocean currents on wind wave generation and propagations are also analyzed. The model results are compared to different data sources, including GOES satellite infrared data, JASON-1 and JASON-2 altimeter data, CODAR measurements, and wave and tidal information from the NDBC and the National Tidal Database respectively. The results identified that the inclusion of the ocean roughness on the atmospheric module greatly improves the wind intensity estimation and therefore also the wind waves and the storm surge amplitude. For example, during the passage of Ida through the Gulf of Mexico the wind speeds are reduced due to the wave induced ocean roughness, resulting in better agreement with the measured winds. During NorIda, the effect of the surface roughness changed the form and dimension of the main low pressure cell, affecting the intensity and direction of the winds. Three different ocean roughness closure models are analyzed, with the wave-age based closure model providing the best results. Ocean currents are also shown to affect wave spectral characteristics through the generation and propagation processes. Changes within 15% on the significant wave height are detected in areas affected by the main oceanic currents: the Gulf Stream and the Loop Current.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2010
- Bibcode:
- 2010AGUFMOS21E1548O
- Keywords:
-
- 0545 COMPUTATIONAL GEOPHYSICS / Modeling;
- 0550 COMPUTATIONAL GEOPHYSICS / Model verification and validation;
- 4255 OCEANOGRAPHY: GENERAL / Numerical modeling;
- 4534 OCEANOGRAPHY: PHYSICAL / Hydrodynamic modeling