Microbialite Morphologies and Distributions-Geoacoustic Survey with an AUV of Pavilion Lake, British Columbia, Canada
Abstract
With advances in lake bottom mapping it has been observed that modern microbialites, much like the ancient stromatolites, thrive in freshwater lake environments. Previously collected data shows that a diverse community of living stromatolites are present within Pavilion Lake (Laval et al., 2000, Lim et al., 2009). An additional comprehensive data set was collected in June-July 2010. By building on the previous dataset it is possible to compare two high-resolution geoacoustic datasets. Using Autonomous Underwater Vehicles (AUVs) as exploration platforms to conduct surveys of the lake bottom, very high-resolution sonar data has been collected. The data collected in June-July 2010 is composed of 125 km of AUV trackline. This length of trackline allowed for survey coverage of nearly the entire lake bottom. The Gavia AUV used for this survey collected bathymetry data collocated with backscatter information. The data has been processed and gridded to 1m, with specific high value areas gridded to a finer 0.5m. The bathymetric data was compiled to create a base map of the floor of Pavilion Lake. Backscatter data was also collected and processed using the same 1m grid resolution. After the backscatter data was processed, it was draped over the bathymetry map of Pavilion Lake. The tools offered within the Fledermaus software package allow for the bathymetry data to be analyzed with respect to slope and rugosity. By analyzing this dense phase measuring bathymetric sonar of the lake bottom, with respect to slope and rugosity, it is possible to map the morphological trends of the stromatolites. Additionally, the ability to compare two datasets allows for erosional changes in the lake bottom to be identified. The bathymetry data allows for the quantitative analysis of bed forms within Pavilion Lake, allowing for a better understanding of microbialite morphologies. The backscatter data is increasingly important to the Pavilion Lake project because of the location and general surroundings of the lake. The lake itself is located in a limestone canyon, which frequently sustains erosional episodes. The backscatter data allows for the differentiation between erosional deposits and microbial mounds. The combination of backscatter and bathymetry allows for a further understanding of bedforms and microbialite growth patterns.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2010
- Bibcode:
- 2010AGUFMOS13F1307G
- Keywords:
-
- 4259 OCEANOGRAPHY: GENERAL / Ocean acoustics