Numerical Modeling of Hydrokinetic Turbines and their Environmental Effects
Abstract
The search for predictable renewable energy has led research into marine hydrokinetic energy. Electricity can be generated from tidally-induced currents through turbines located in regions of high current speed and relatively low secondary flow intensity. Although significant technological challenges exist, the main obstacle in the development and commercial deployment of marine hydrokinetic (MHK) turbines is the uncertainty in the environmental effect of devices. The velocity deficit in the turbulent wake of the turbine might enhance the sedimentation process of suspended particles in the water column and lead to deposition into artificial patterns that alter the benthic ecosystem. Pressure fluctuations across turbine blades and in blade tip vortices can damage internal organs of marine species as they swim through the device. These are just a few examples of the important potential environmental effects of MHK turbines that need to be addressed and investigated a priori before pilot and large scale deployment. We have developed a hierarchy of numerical models to simulate the turbulent wake behind a well characterized two bladed turbine. The results from these models (Sliding Mesh, Rotating Reference Frame, Virtual Blade Model and Actuator Disk Model) have been validated and are been used to investigate the efficiency and physical changes introduced in the environment by single or multiple MHK turbines. We will present results from sedimenting particles and model juvenile fish, with relative densities of 1.2 and 0.95, respectively. The settling velocity and terminal location on the bottom of the tidal channel is computed and compared to the simulated flow in a channel without turbines. We have observed an enhanced sedimentation, and we will quantify the degree of enhancement and the parameter range within which it is significant. For the slightly buoyant particles representing fish, the pressure history is studied statistically with particular attention to the high magnitudes of pressure fluctuation occurring over short periods of time. These high impulse conditions are correlated with damage thresholds obtained from laboratory experiments in the literature. *Supported by DOE through the National Northwest Marine Renewable Energy Center Top view of the channel with turbine hub located at (0,0). Particle sedimentation is enhanced closer to the turbine location and effect of hub can be seen at the end of the channel.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2010
- Bibcode:
- 2010AGUFMOS11C..06J
- Keywords:
-
- 0545 COMPUTATIONAL GEOPHYSICS / Modeling;
- 4200 OCEANOGRAPHY: GENERAL;
- 4512 OCEANOGRAPHY: PHYSICAL / Currents;
- 9810 GENERAL OR MISCELLANEOUS / New fields